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Abstract. Using the framework of the coupled reaction channels (CRC) the one- and two-neutron transfer
process initiated by the weakly bound nucleus 6He on 12C at an energy of EL = 5.9 MeV is studied. The
absolute cross-sections for a few states in 14C are well reproduced within a factor 2 in second order, using
microscopic wave functions of 6He and 12C. Only a small dependence of the cross-section on details of the
6He wave function is observed. Good fits to the data are obtained in a calculation with full coupling (25
iterations) with renormalised optical potential parameters and spectroscopic amplitudes of 6He.

PACS. 25.70.-z Low and intermediate energy heavy-ion reactions – 25.60.Je Transfer reactions – 25.10.+s
Nuclear involving few-nucleon systems

1 Introduction

Reactions induced by 6He have attracted great attention
[1,2] because of its unusual structural properties related to
the fact that the odd isotope 5He is unbound. The 6He0+

ground state is an example of a three-body bound state
or “Borromean” nucleus, because the subunits of two par-
ticles are unbound, with the three-body system forming a
bound system. Apart of break-up reactions yielding spec-
troscopic information on the neutron configurations in the
6He0+ ground state, the two-neutron transfer has recently
been studied experimentally [3,4], for example also in the
α+6He elastic transfer channel [5,6].

The study of two-neutron transfer induced by heavy
ions has a long history [7,8,10]; there has been consid-
erable progress in the theoretical description of the two-
nucleon transfer over the last two decades in particular
in attempts to reproduce absolute cross-sections. The en-
hanced transfer of nucleon pairs, in particular of two neu-
trons has attracted large interest due to its relation to
pairing correlations. In a microscopic basis it has been
treated on the basis of mixed shell model wave functions
with great success [8,9]. With modern computational tech-
niques and using the coupled reaction channel (CRC) ap-
proaches [11], it became possible to get satisfactory re-
production of the absolute cross-sections as well as of the
shapes of differential cross-sections [9,10]. The advent of
radioactive beams now allows the study of two-neutron
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transfer reactions induced by weakly bound nuclei. Among
the lighter nuclei, the 6He-nucleus has been available for
some time, and data on two-neutron transfer have become
available recently.

In the present study we report on an analysis of one-
and two-neutron transfer reaction induced by 6He on a 12C
target related to the experimental results of ref. [3]. The
incident energy of Elab = 5.9 MeV is above the Coulomb
barrier, and differential cross-sections for individual states
in 14C have been reported, as well as for the elastic chan-
nel. For the structure of 14C there are several studies,
in particular for the structure of the 0+ states (ground
state and at 6.5 MeV excitation) the configuration mixing
between the p-shell and the sd-shell has been discussed
[12,13]. With the CRC methods implemented in the code
FRESCO [11] we have good conditions to make state-of-
the-art calculations and compare with the recent experi-
mental result.

2 Coupled Reaction Channel calculations

The main aim of the present study is to test the dynami-
cal and structural properties of the 6He-induced reactions.
For a better understanding it is of importance to have a
look at the Q-values of the one- and two-neutron transfer
channels. We show in fig. 1 the relevant quantities for the
5He and 4He channels. Q-values tend to be rather posi-
tive due to the comparably weak binding of the neutrons
in 6He. Inspecting fig. 1 we recognise that the one-neutron
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Fig. 1. Q-value diagram for one and two-neutron transfer in
the system 6He + 12C. The Q-value for the 14C ground state is
very positive and introduces a mismatch. For some transitions
one- and two-step processes are indicated.

transfer has moderately positive Q-values, whereas the Q-
value for the ground state of 14C reaches up to 12 MeV.
The one-step and two-step two-neutron transfer routes are
drawn for illustration. For the excited states in 14C the
individual steps in the two-neutron transfers are rather
similar, whereas the second energy step for the ground-
state (GS) transition of 14C is large as compared to the
first one.

A particular feature is that in one neutron transfers
the ground state of the 5He nucleus a p3/2 resonance at
0.89 MeV with a width of 600 keV is formed, and therefore
no data can be made available for the one-neutron transfer
cross-section in these studies.

2.1 Basic formulae for the one- and two-nucleon
transfer

In the present work the two-particle transfer has been cal-
culated using the “standard” procedure, the transfer pro-
cess is treated in the coupled reaction channel scheme [11],
where single-neutron and two-neutron transfer are treated
in a consistent way. The matrix elements for the one-
nucleon transfer are defined in the usual way by the over-
lap of the single-particle wave functions 〈Φ4He|Φ5He〉 =
φ1i(ri) for the 5He overlap and 〈Φ13C|Φ12C〉 = φ1f (rf ) for
the overlap of 12C with 13C. The relevant spectroscopic
amplitudes and quantum numbers for the single-nucleon
states in carbon are given in table 1 and for two nucleons

Table 1. Spectroscopic amplitudes for wave functions in C-
isotopes.

Jπ for
〈
13CJπ |12Cgs

〉
ref. [16] This work

1/2- 0.88 0.77
1/2+ 0.81 0.77
5/2+ 0.76 0.77

Jπ for
〈
14CJπ |13C1/2−

〉
ref. [19] This work

0+ 1.35 1.16
1− 1.00
0+ 0.56
3− 1.00

Jπ for
〈
14CJπ |13C1/2+

〉
ref. [19] This work

0+ 0.17 0.17
1− 1.00
0+ 0.60

Jπ for
〈
14CJπ |13C5/2+

〉
ref. [19] This work

0+ 0.38 0.51
0+ 0.97
3− 1.00

Table 2. Two-nucleon amplitudes for the configurations of 14C
states.

Overlap (p 1
2
)2 (s 1

2
)2 (d 5

2
)2 Reference

〈
12C|14C

〉
0+
1

0.66 −0.26 −0.69 This work
0.66 −0.23 −0.25 Ref. [12]
0.9 0.12 0.39 and [13]

〈
12C|14C

〉
0+
2

0.23 0.46 0.87 This work
0.24 0.63 0.69 Ref. [12]
0.43 0.46 0.75 and [13]〈

12C|14C
〉
1−

(p 1
2
)(s 1

2
) (s 1

2
)(p 1

2
)

0.9 0.9〈
12C|14C

〉
3−

(p 1
2
)(d 5

2
) (d 5

2
)(p 1

2
)

0.7 0.9

in table 2; similarly for the second step of the two-neutron
transfer single-neutron overlaps of 5He with 6He and 13C
with 14C are needed, the spectroscopic factors for these
overlaps can also be found in the cited table 1.

The two-nucleon transfer will consist of a coherent su-
perposition of three parts, the sequential single-nucleon
transfer amplitudes, the one step amplitude for two-
neutron transfer and the non-orthogonality term. The co-
herent sum gives the differential cross-section given by the
relation

σ(θ) = [fseq(θ) + f1step(θ) + fnon(θ)]2 . (1)

Here the individual components of the two-nucleon over-
lap are directly determined by the spectroscopic ampli-
tudes of the individual single-neutron transfer steps. For
the unbound state of the 5Hegs(p3/2) we have used the
weakly bound approximation (with EB = 0.010 MeV),
because the angular-momentum barrier for � = 1 states
produces a tail of the wave function which is rather inde-
pendent of the binding energy, however, we use the correct
asymptotic Q-values in the dynamical CRC calculation.
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For the one-step two-nucleon wave function,

Φ2n(r1, r2)Jπ =
〈
12 C0+ |14C Jπ 〉 ,

we subdivide the single-nucleon binding energy into equal
halves. In this way a better asymptotic behaviour is
achieved. However, we found that this procedure made
only little difference as compared to the case where the
product of the original two individual single wave func-
tions are used. More relevant is the configuration mixing
in the two-nucleon wave function Φ(1, 2, R) which is rep-
resented by the following sum:

Φ(1, 2, R)0+ ∼
∑

k

ak

[
φk

(nlj)(R)
]2

0+
. (2)

Here the following definitions are used: φk
(nlj) is the single-

particle wave functions, with the shell model quantum
numbers (nlj); the coordinates r1, r2 are transformed into
the R-coordinate which connects the centre of the two-
nucleon wave function to the core. The mixing amplitudes
ak for the superposition of configurations in the 0+ states
are given in the table 2. The coefficients are obtained by
multiplying the spectroscopic amplitudes of the first and
second steps. For the negative-parity states usually only
one configuration determines the structure:

Φ(1, 2, R)J− = [a1(nlj)a2(nlj)φ
1
(nlj)φ

2
(nlj)]J− , (3)

here again the product of the first and second step spectro-
scopic amplitudes are used. The same considerations are
needed for the

〈
6 He|4He 〉 two-neutron overlap, it has no

configuration mixing in the present approach. We use the
full p3/2 strength without a p1/2 admixture. Explicit cal-
culations using the configuration mixing with the small
p1/2 shell admixture discussed in ref. [1] have been per-
formed, but gave no distinct differences in the calculated
result.

Due to the weak binding of the neutrons and the large
difference in binding energies (positive Q-values) large
non-locality effects for the 6He systems are expected and
various numerical tests have been made.

2.2 Numerical aspects of the CRC calculations

As in a previous study of one- and two-neutron trans-
fer [14] induced by 11Be on 12C, numerical checks have
been performed in order to asses the importance of var-
ious terms in the case of CRC-calculations with weakly
bound systems. The second-order effects in single neutron
transfer are very strong due to the large cross-sections.

The important parameters in the CRC calculation are,
apart from the appropriate integration step length, the
width and the range for the integration of the finite range
integral. A test if these parameters are correctly chosen is
obtained by comparing calculations in the prior and post
representations. The results should not differ, however,
for cases with very large Q-value (or angular-momentum
mismatch), it becomes often difficult to achieve this in-
dependence. In this case the relevant recipes for reducing

0 30 60 90 120 150 180
Θcm [deg]

10 -1

10 0

10 1

σ/
σ

R
ut

h.

two iterations
three iterations
exp. data ref. [3]

Elastic scattering 12C(6He,6He)12C Elab=5.9 MeV

Fig. 2. Elastic scattering 6He + 12C at Elab = 5.9 MeV. The
calculations are the result of using parameters in table 4.

the non-orthogonality effects, known since more than 2
decades are used: the prior representation is used in the
first step, and the post representation in the second/final
step [11].

We have also studied the dependence of the results on
the number of iterations. There are big contributions of
back coupling into the entrance channel. In order to ob-
tain the sequential transfer two iterations are necessary,
more iterations are needed to obtain a final convergence.
In fig. 2 one can see the influence of higher order back
coupling on the elastic scattering. We should note that
the main part of this contribution comes from sequen-
tial one-neutron transfer processes, the contribution to
the elastic scattering from the higher order two-neutron
transfer process is small due to the comparably smaller
probabilities for the population of the 14C states. In the
first calculation we used only second order coupling, be-
cause it turned out to be difficult to obtain convergence
for small partial waves in calculations with higher iter-
ations, due to the large couplings at small distances. In
order to overcome this difficulty, we have used a strongly
absorbing core of the imaginary potential, as in previous
work [14], in order to damp couplings at small angular
momenta and achieved convergence after more than 20
iterations. This result gives overall smaller absolute cross-
sections, the real potential needs a very strong renormali-
sation for this case of strong coupling, a procedure, which
has been discussed in the literature before [15]. Calcula-
tions with renormalised optical potentials and CFP-values
are discussed in section 4.5.

For the other parameters of the calculations we cite
the following values: due to the very long tails of the wave
functions we had to use a maximum value of the radial
integration limit of at least Rmax = 35 fm, similarly in
order to come to a convergence of the values from calcu-
lations in the post or prior representations, the width of
the nonlocal form factor had to be chosen larger than 6
fm.
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3 Structure aspects of the reaction 6He+12C

3.1 Wave functions of 13C and 14C

The structure of the low-lying states of 13C and 14C is
well known [16], the spectroscopic amplitudes for the p1/2,
s1/2 and d5/2 shells have been determined repeatedly and
values are compiled in table 1 and 2 , where we show the
relevant information for the values of this work. For the
one-step 2n-transfer the product of the single one-neutron
transfer amplitudes are directly used. Note, however, that
special two-neutron wave functions are cited [12,13] with
the amplitudes for the individual configurations directly
taken from the literature. In one case ( ref. [12]) a negative
sign is given to the sd-shell amplitudes for the ground
state (0+), and a positive sign for the excited 0+ state;
this feature represents the collective pairing property of
the ground state. Its consequences are well seen in the
results of the calculation, where the sequential and one-
step amplitudes are added coherently (see figs. 4, 5). For
the negative parity states only one configuration is used,
however, two different sequential routes (and amplitudes)
contribute as indicated in fig. 1 by the dashed lines for the
3−-state.

3.2 Wave functions of 5He and 6He

The structure of 6He has been the subject of numerous
studies because the subsystems 5He and the two neutrons
are not bound. A complicated spatial distribution of the
wave functions has been predicted [1]. The part of the
wave function which corresponds to a “di-neutron” ex-
tends to the surface of 6He, we expect that this part will
dominantly contribute to the two-neutron reaction at the
low-energy considered here. The dominance of the con-
tributions of the “di-neutron” has also been observed in
ref. [2] at much higher energy.

Table 3. Binding potentials for neutron bound states in He
and carbon.

V r a Vls rls als

(MeV) (fm) (fm) (MeV) (fm) (fm)
12C+n −46.8 1.20 0.9 7.0 1.20 0.9
13C+n −54.08 1.20 0.9 7.0 1.20 0.9
5He+n −52.6 1.20 0.9 7.0 1.20 0.9
4He+n −51.15 1.20 0.9 7.0 1.20 0.9

Gaussian shape
5He+n −61.05 b = 2.3 7.0 1.20 0.9
4He+n −56.11 b = 2.3 7.0 1.20 0.9

Table 4. Optical potentials [17,18].

Potentials V r a W rw aw

(MeV) (fm) (fm) (MeV) (fm) (fm)
6He+12C −46.15 0.91 0.57 −25.0 0.6 1.43
ref.[17]
CRC −96.0 0.91 0.57 −10.0 1.1 0.5
ref.[18] −177.0 1.3 0.57 −12.0 1.5 0.6

5He+13C −46.15 0.91 0.57 −25.0 0.6 1.43
same values

4He+14C same values 0.7

For the present reaction at the moderate energy of
Elab = 5.9 MeV a typical surface stripping process, as
often observed with heavy ions [7] is expected to occur.
Therefore we will use a rather simple model of 6He with
a (p3/2)2 configuration, as reflected in the spectroscopic
factors chosen, which are 1.0 and 2.0 for the first and sec-
ond neutron, respectively. There is still an ambiguity with
the Q-value of the intermediate step: we use the correct
Q-value of the 5He-channel, but we use a quasi-bound ap-
proximation for the 5He ground state with a binding en-
ergy of 0.01 MeV. This approximation seems to be rather
good in view of the dominance of the � = 1 centrifugal bar-
rier of the p3/2 configuration. For the two-neutron wave
function we use the correct asymptotic binding energy of
0.98 MeV.

Calculations of the sequential process, where the 5He
state is treated as a resonance have also been made using
the FRESCO code [11], however, the difference to calcu-
lations with the quasibound approximation are to small,
to be considered in this discussion. As we will see later,
the sequential two-step 2n-transfer dominates the transi-
tions to the odd-parity states and for the 0+ states it also
contributes at least 50%.

3.3 Bound-state potentials

In the analysis we have to choose the bound-state poten-
tial for the quasibound states in 5He and the bound state
in the

〈
5 He|6He 〉 channel. The parameters of the binding

potentials for the helium nuclei and for the description of
the bound states in 13C and 14C are indicated in table 3.
The relevant values for the central (Woods-Saxon shape)
and the spin orbit potentials are given.

For the 5−6He wave functions we have also used the
Gaussian-shape of the binding potential as in ref. [1].
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Fig. 4. Results of the second-order calculations for the differential cross-sections for the reaction,6He + 12C →6He + 14C at
Elab = 5.9 MeV : a) – 14Cgs, b) –

14C∗
1− , 6.09 MeV, c) – 14C∗

0+
2
, 6.59 MeV, d) – 14C∗

3− , 6.73 MeV.

This choice actually produced a slightly higher 2n-transfer
cross-section relative to Woods-Saxon (WS) potentials
given in the table, by 20% in the first maximum and
factor 2 in the secondary maximum at 30◦ (see figs. 7
and 8). The RMS radius of 6He, which corresponds to
the chosen binding potentials is 2.35, for a radius param-
eter r = 1.2 fm and the diffuseness of a = 0.9 fm; taking
a radius parameter of 1.9 fm increases the RMS radius
to 2.45 fm. For the Gaussian shape of the potential we
have RMS = 2.21 fm (for a Gaussian width of 2.3 fm).
For the RMS radius of 4He which enters into this discus-
sion, a value of RMS = 1.47 fm is used. We varied the
binding potentials for the neutron bound states in order
to obtain different RMS radii, as discussed in section 4
the influence on the differential cross-section is small and
larger RMS produced smaller differential cross-sections at
angles smaller than 90◦.

4 Results of CRC calculations

4.1 Optical potential parameters

Another important ingredient for the CRC-calculation is
the scattering potential for the 6He elastic channel and the
exit 4He channels. We have chosen two different parameter
sets given in table 4, one which reproduces very precisely
the phase shifts of low energy α-12C scattering [17], and

another set which reproduces well the background (po-
tential) scattering at higher energies [18]. In addition ta-
ble 4 gives parameters used in a full CRC calculation (25
iterations and increased CFP values) discussed below in
section 4.5.

The first potential is moderately attractive and gave
rather good description of the elastic scattering with an
adequately chosen imaginary potential. Actually, due to
the large cross-section for single neutron transfer the ex-
plicit coupling of the transfer channels introduces a siz-
able effect on the elastic channel as illustrated in fig. 2.
However, this potential fails if higher order couplings are
calculated, due to very strong couplings at small distances
and no convergence is observed. We have chosen a large
diffuseness for the imaginary potential for the 6He and
5He channels in order to describe the absorption at large
angles due to break-up (or transfer to the continuum),
which we have not considered in these calculations.

The second choice of potentials from higher energy α-
scattering is strongly refractive. With these potentials the
elastic scattering can be well reproduced, however, the 2n-
transfer cross-section obtained are more than a factor 10
smaller than in the other case. These calculations are not
shown, we think that these potentials are much to deep for
our case at low energy. It is actually known, that the study
of transfer channels can help to reduce the ambiguities in
optical model potentials [7].
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Fig. 5. Results of second-order calculations for the 0+ states
populated in the one-step transfer processes with various de-
grees of configuration mixing in the wave functions of 14C as
given in table 2.

In the exit channel for 4He+14C the diffuseness of the
imaginary potential has been reduced to a value of 0.7 fm.
As in previous calculations we have used a core absorp-
tive potential (W0 = 20 MeV, rw = 0.5 fm, aw = 0.3 fm)
in order to facilitate the convergence of the CRC calcu-
lations which tend to show strong coupling at very small
distances. For the results which include inelastic excita-
tion of 6He (2+) state and full CRC coupling (about 25
iterations) we have used an even more absorptive core
(W0 = 80 MeV, rw = 0.5 fm, aw = 0.25 fm). The re-
sults for the one-neutron transfer are shown in fig. 3, the
results in the second-order CRC are compiled in figs. 4–8.
The result of the full CRC calculation is shown in fig. 9.

4.2 One- and two-step neutron transfer

As mentioned in the introduction the transfer of two neu-
trons will contain three terms, the one-step, the sequential
transfer and the non-orthogonality term. In fig.4 we show
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Fig. 6. Results of second-order calculations for the 0+ states
populated in the two-step transfer processes with various de-
grees of configuration mixing in the wave functions of 14C as
given in table 2.

for each of the four states in 14C the result of the calcula-
tions for the individual contributions and for the sum. For
the ground state (0+) we notice a slight dominance of the
one-step contribution and a constructive interference be-
tween the one- and two-step amplitudes. For the excited
0+-state the sequential transfer dominates, the one-step
amplitude introduces a destructive interference of the two
amplitudes. For the negative-parity states with spin par-
ity (1−) and (3−)—as expected—the sequential transfer
dominates by factors 100–1000, implying that there is no
“di-neutron” structure involved in this transfer process.

The different configurations responsible for this be-
haviour have been mentioned before and the effect of con-
figuration mixing is discussed in more detail in the next
section.
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Fig. 7. Results of second-order calculations for the 0+ states
populated in the one- and two-step neutron transfer processes
with various degrees of configuration mixing in the wave func-
tions of 14C as given in table 2.

4.3 Configuration mixing

Whereas for the 6He wave function we have used the pure
(p3/2)2 wave function, it is necessary to consider configu-
ration mixing to the 0+ states in 14C. A particularly inter-
esting case of configuration mixing is realized in these 0+

states. The ground state (and the excited 0+ state) will
consist of amplitudes of the p-shell and sd-shell, both act-
ing constructively in the ground state (this is realised by
a negative sign of the sd-shell amplitudes shown in table
2).

We can follow the build-up of the cross-section in the
case of sequential and one-step transfer in figs. 4, 5, 6 and
7. We see that the addition of s- and d-shell amplitudes
give an increase in the cross-section in particular for the
two-step process. This phenomenon of mixing of two dif-
ferent shells with opposite parity, known from previous
work, is also responsible for the large spatial extension
of the di-neutron in 11Li as discussed in several refs. [1,
13]. We note that the signs of the two neutron amplitudes

which are chosen in this work in accordance with those
proposed in ref. [12] give particular behaviours: i) the de-
structive and constructive effects in figs. 5 and 6, favouring
the excited 0+ state; ii) the constructive (destructive) in-
terference of the one-step and two-step amplitudes in the
GS (0+) and excited (0+) states, respectively.

4.4 Dependence of the cross-section on RMS radii and
final result

It is well known that the absolute cross-sections depend on
the parameters of the potential used to create the binding
states. This occurs through the differences of the tails of
the wave functions and through the potential itself, which
enters as the effective interaction of the transfer process.
In the present case we looked into the dependence of the
cross-sections on the root mean square radius (RMS) by
varying the binding potential parameters.

For the weakly bound system like 6He the values of the
RMS-radius (see [1]) are often used to discuss the radial
extension of the wave function and its relation to break-up
cross-sections is cited. Actually the total reaction cross-
section of 6He (dominated by break-up processes) is used
and an experimental value of Rexp(RMS 6He)=2.57± 0.1
fm is cited in ref. [1]. We have looked into the dependence
of the two-neutron transfer reaction cross-section on the
value of RMS of 6He. We found that the 2n-transfer cross-
section decreased by 20% if the RMS is increased from 2.35
fm to 2.46 fm. This effect may be understood, because
we observe a strongly structured angular distribution for
the 0+ states, which is due to large far-side contributions
to the amplitudes originating from the nuclear interior
(due to the refractive optical potential). These far-side
contributions sample the nuclear wave function inside of
the Coulomb barrier and inside of the “interaction” radius.
A larger RMS radius (obtained with a smaller radius of
the binding potential) corresponds to smaller values of the
wave function at small distances. The two-neutron transfer
reaction thus samples completely different parts of the 2n-
wave functions as compared to the total reaction cross-
section used to deduce the Rexp(RMS)-value cited above.
We keep the values of the binding potential as cited in
table 3. for our final comparison with the data.

For a final comparison (shown in fig. 8) we use the
Gaussian shape of the binding potential for 6He and a
reduced value (compared to table 4) of the imaginary
part of the α+14C-channel (W = 10 MeV, rw = 1.2 fm
aw = 0.7 fm). We see that the absolute cross-section of all
four states are reasonably well described with the choice
of the present parameters. Some deficiencies of the calcu-
lations appear for the second and third maximum of the
0+ states. This may be related to an incomplete descrip-
tion of the contribution from small distances, which could
be related to some components of the 6He wave functions,
or more likely, to some details of the optical potential pa-
rameters and higher order couplings (compare next sub-
section). However, we consider the result for the shape
of the angular distributions and the overall agreement in
absolute cross-section as rather satisfactory.
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Fig. 8. Final result of the second-order calculations for the 12C(6He,4He)14C reaction using a Gaussian shape of the binding
potential in 5−6He and two versions of the imaginary potential.

4.5 Full CRC results

In the present reaction a strong coupling occurs if we fol-
low the iterations beyond second or third order. In fact
these higher order couplings are needed to describe the ex-
perimental data correctly. However, with the introduction
of the full coupling the calculated absolute cross-section
drops by a factor 5–10 (see in fig. 9 the curve labelled
“normal”). To get an improvement in the value of abso-
lute cross-sections in the full CRC calculation we have
to increase the strength of coupling by about 70%. In
fig. 9 the results for the full CRC (25 iterations) calcula-
tions are shown. The full curve corresponds to the normal
strength of coupling and the dotted one to the increased
strength (which is only done in the (6He/5He/4He)-branch
(CFP(2n)=3.4, CFP1(1n)=1.7, CFP2(1n)=2.0).

In the full CRC case a considerable renormalisation of
the optical potential is needed. In the frame of Feshbach’s
formalism the optical potential may be written as ref. [15]
(here V00 is a “bare”-potential),

Uopt = V00 + ∆V , (4)

where

∆V =
∑
αα′

V0α

(
1

E − H − iε

)
αα′

Vα′0 ,

and ∆V is the so called dynamical polarisation potential
(DP) which arises due to coupling from the elastic channel
“0” to all channels α, α′

As was shown in the previous sections we have a rather
good description of the differential and absolute cross-
sections in second-order approach with optical model pa-
rameters cited in table 4. Now, in the case of full CRC
approach, due to strong coupling to the channels the in-
fluence of DP potentials starts to play an essential role. We
used renormalised parameters of optical potentials listed
in table 4 as “CRC”. We note that the real potential has
to become much deeper. This corresponds to the observa-
tion in other reactions discussed by Sakuragi [15], where
the coupling introduces a repulsive effect, if described by
the local potential.

In fig. 9 the final results for the full CRC calculations
are shown. There we illustrate the results with normal and
increased strengths (full and dotted curves). We note that
the calculation shows more pronounced structure in the
case of the second (0+

2 ). It could be possible that the data
have here a systematic problem because of limited reso-
lution in separating the 0+

2 and 3− states. We have also
studied the influence of the “indirect” routes via the in-
elastic excitation of 6He (2+) state. This is done by treat-
ing the 2+ in a deformed collective model with a defor-
mation parameter (β2=0.73) as reported by Aumann et
al. [20] (B(E2; 0+ → 2+)=3.2 e2fm4, we use rc=1.25 fm).
The dashed curve corresponds to β2 > 0 and dot-dashed
to the negative sign of β2. One can see, that the influence
of the 6He (2+) channel is not very large as can be ex-
pected because of the small cross-section of the 2+ state
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Fig. 9. Full CRC calculation for the 12C(6He,4He)14C reaction with 25 iterations leading to states in 14C as in fig. 8. The
curves are labelled for different choices of spectroscopic amplitudes and couplings as explained in the text.

(the calculated total cross-section for inelastic excitation
of 6He (2+) is approximately 49 mb).

5 Conclusions

In this work we have obtained a satisfactory description of
the two-neutron transfer cross-sections induced by 6He on
12C at a low energy of Elab = 5.6 MeV. In the second-order
calculation the absolute cross-section for the 0+ states are
typically under predicted by a factor two. This discrep-
ancy could possibly be removed by a more detailed search
of potential parameters, which could have been varied in
the exit channel more extensively. In the present analy-
sis we observe that the differential cross-sections for odd-
parity states are well described (also the absolute values)
by a sequential neutron transfer process, whereas for the
0+ states a complicated interference of amplitudes with
different configurations in the one and two-step processes
occurs.

The dependence of the cross-section on the root mean
square (RMS) radius of 6He has been studied; it has been
found that the differential cross-section decreased for in-
creasing RMS values. This effect may be attributed to the
occurrence of large refractive far-side contributions in two-
neutron transfer to the differential cross-section at small
angles, which in fact show very pronounced structures.
The reaction thus samples a larger part of the wave func-
tion which extends to the nuclear interior. This effect in
heavy-ion–induced two-nucleon transfer has actually also

been shown in ref. [7]. The various spectroscopic ampli-
tudes used in the present analysis were mostly known
from the literature, and were slightly adjusted. Due to
the large amplitudes of the neutron wave functions higher-
order coupling calculations (CRC) have been performed.
In these cases the spectroscopic amplitudes of 6He and the
parameters of the optical model had to be renormalised.
The final result was an improved fit of the shapes of the
angular distributions. The indirect route via the 6He (2+)
state was found to be of minor importance. We conclude
that due to the many parameters entering into the final
result it does not seem to be possible to make a detailed
study of the 6He wave function from two-neutron transfer
studies.

This work has been partially supported by funds of The Fed-
eral Ministry(BMBF-Verbundforschung-FOBOS). We are in-
debted to Wilfried Galster and A.Piechaczek for making the
data available to us.
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